
Introduction

In the modern world, organic chemicals have 
extensively been used in a variety of industries, 
including pharmaceuticals, fuels, beverages, foods 
and agricultural products [1-3]. However, limited 
information is available about their potential risk 

to the environment – especially in developing 
countries because of time and economic constraints  
[4-6]. In aquatic systems, it is often difficult to make 
relationships of cause and consequences for aquatic life 
[7]. So far, different efforts have been made to look 
into other avenues, i.e., physico-chemical properties, 
different biological barriers and modelling of existing 
data to address the toxic potential of pollutants  
[8-12]. Among different physico-chemical properties 
(e.g., adsorption forces at surface, solubility, hydrogen 
bonding, lone-pair electrons, chemical polarity and 
polarizability among different atoms and molecules)  
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of organic pollutants, hydrophobicity plays a substantial 
role in the bio-availability/bio-accessibility of these 
chemicals [13-16]. 

According to the mode of action, chemicals are 
classified into two main classes: chemicals with a non-
specific mode of action and chemicals with a specific 
mode of action [17-19]. Chemicals having non-specific 
toxicity usually interact with lipids of membranes in 
bio-molecules, and therefore toxic effects are highly 
associated with their hydrophobicity. In contrast, 
chemicals with a specific mode of action have not only 
specific target-oriented effects (based on the specific 
receptors), but the non-specific components (due to the 
hydrophobic nature) also contribute to the overall toxic 
effects [18]. Hydrophobic potential of environmental 
pollutants can be calculated from octanol-water 
partition coefficients (log Kow) [20-22]. In an aqueous 
environment, the concentration of highly hydrophobic 
chemicals remains quite low, and therefore their specific 
toxic effects may not be obvious [23]; whereas non-
specific toxic effects will remain due to hydrophobicity 
and will be additive [24, 25]. 

Daphnia magna (water flea), Vibrio fischeri (Marine 
bacterium), Tetrahymena pyriformis (protozoan), green 
algae and fish are the most commonly used laboratory 
species [26-32]. A large amount of toxicity data 
obtained by reliable and robust methods is available 
for these test systems [33-38]. It still remains unclear 
whether the linear relationship between hydrophobicity 
and toxicity exists for all environmental pollutants [39]; 
therefore, for better understanding, it is imperative 
to work in this area. In the present study, we aim at 
identifying the toxicological diversity with respect to 
different hydrophobicity levels among Tetrahymena 
pyriformis, Daphnia magna and Poecilia reticulata. 
The sensitivities of these three bio-indicators with 
reference to their hydrophobicity was analysed in order 
to obtain a wide range of hydrophobicity with clear 
difference in their pertinent sensitivity toward different 
chemicals.

  
Materials and Methods

In the present study we conducted bibliographical 
research. We obtained toxicity data of 55 organic 
contaminants including narcotic compounds from 
literature toward three different test systems by using 
Tetrahymena pyriformis, Daphnia magna and Poecilia 
reticulate. The molecular descriptor (log Kow values = 
octanol/water partition coefficient) has been determined 
using the EPI suite (USEPA, 2009). The mortality of 
a guppy (P. reticulata) after 96 hours and the growth 
impairment of ciliate (T. pyriformis) population in terms 
of  LC50 and IGC50 data (secured from TETRA-TAX) 
for these chemicals with toxic effects were selected 
from an appendix by Seward et al. [33] as the source of 
data. The protocol details for T. pyriformis population 
growth impairment are given in a study reported earlier 

[38]. The presented toxiciare value for Daphnia magna 
and the median lethal concentration (LC50) for essays of 
48-h were collated from an appendix by Von der Ohe et 
al. [37] as the source of data.  

Results and Discussion

The research performed resulted in three 
systemized toxicity test systems with relevance to 
their hydrophobicity. The toxicity database contains 55 
organic chemicals with different hydrophobicity levels 
ranging from −0.24 to 3.93. For all three test systems, 
the interspecies toxicity correlation was carried out 
for the toxicity values illustrated in Table 1. Overall, 
a significant correlation was recorded among all three 
test systems. The interspecies toxicity correlation 
was highest between Tetrahymena pyriformis and 
Poecilia reticulata (R = 0.93). Whereas, the correlation 
was slightly weaker between the toxicity toward 
Tetrahymena pyriformis and Daphnia magna (R = 0.73) 
and between the toxicity toward Daphnia magna and 
Poecilia reticulata (R = 0.74). 

The main objective of the present study was to 
identify toxicological differences of various chemicals 
at different hydrophobicity levels among three test 
organisms, i.e., Tetrahymena pyriformis, Daphnia 
magna and Poecilia reticulata. The sensitivity of 
these bio-indicators with their hydrophobicity data is 
illustrated in Table 1. The results obtained suggest that 
the hydrophobic property of chemicals has a strong 
influence on chemical uptake by organisms as translated 
into different toxicity levels. The acute toxicity results 
reveal substantial differences in the sensitivity of the 
three test systems, but at certain level of hydrophobicity 
(log Kow values 0.5 to 2.5) as shown in Fig. 1.

In general, toxicological data suggests that all 
organisms sensitivity to these organic chemicals lay on 
the same order of the magnitude. Analysing the acute 
toxicity bio-assays separately for these chemicals, we 
cannot see any toxicological difference at very low 
(Tetrahymena vs Poecilia) and very high (Daphnia 
vs Poecilia) hydrophobicity levels. The hydrophobic 
potential of chemicals is suggested to be a major 
driving force for intake of xenobiotics in aquatic 
species. Consequently, it leads to the accumulation of 
hydrophobic residues in the cellular membranes causing 
narcotic effects. However, the concentration of the 
chemicals in the aqueous cytosole is decreased, which 
results in less availability to reaction targets such as 
protein sites in the hydrophilic environment of the cell 
contents of the aquatic species. Furthermore, chemical 
capabilities of a compound to interact and modify 
proteins and other macromolecules like DNA depend on 
its hydrophobicity (log Kow) and reactivity (the presence 
of reactive moieties) [40]. 

The majority of industrial organic chemicals (about 
60%) are considered to act as baseline contaminants 
(i.e., acts via narcosis). Their toxicities are quantitatively 
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Sr. No. Chemical CAS log Kow
Tetrahymena pyriformisa 

(M)
Daphnia magnab 

(M)
Poecilia reticulatac

(M)

1 Acetone 67-64-1 -0.24 -0.8 -0.62 -0.9

2 Ethanol 64-17-5 -0.14 -0.69 -0.59 -0.56

3 2-Methyl-2,4-pentanediol 107-41-5 0.58 -1.04 -1.22 -1.04

4 Isobutanol 78-83-1 0.77 -1.63 -1.82 -1.71

5 Aniline 62-53-3 1.08 -2.77 -5.33 -2.91

6 2,2,2-Trichloroethanol 115-20-8 1.21 -2.54 -3.00 -2.69

7 Phenol 108-95-2 1.51 -2.54 -3.44 -3.45

8 3-Methoxyphenol 150-19-6 1.59 -2.67 -3.48 -3.22

9 2-Methylaniline 95-53-4 1.62 -2.45 -5.31 -3.12

10 3-Methylaniline 108-44-1 1.62 -2.58 -5.17 -3.47

11 1,3-Dinitrobenzene 99-65-0 1.63 -3.76 -3.59 -4.64

12 2-Chloroaniline 95-51-2 1.72 -2.75 -5.19 -4.31

13 3-Chloroaniline 108-42-9 1.72 -3.01 -6.11 -3.98

14 4-Chloroaniline 106-47-8 1.72 -4.35 -6.41 -3.67

15 Nitrobenzene 98-95-3 1.81 -3.14 -3.48 -2.97

16 2-Methylphenol 95-48-7 2.06 -2.71 -4.05 -3.77

17 3-Methylphenol 108-39-4 2.06 -2.97 -3.04 -3.48

18 4-Methylphenol 106-44-5 2.06 -2.79 -3.68 -3.74

19 2-Ethylaniline 578-54-1 2.11 -2.65 -4.18 -3.21

20 4-Ethylaniline 589-16-2 2.11 -3.05 -6.13 -3.52

21 2-Chloro-4-nitroaniline 121-87-9 2.12 -3.75 -4.49 -3.93

22 Quinoline 91-22-5 2.14 -3.09 -3.53 -3.63

23 4-Chlorophenol 106-48-9 2.16 -3.54 -4.42 -4.18

24 2,4-Dinitrotoluene 121-14-2 2.18 -3.64 -3.72 -4.16

25 1-Chloro-2,4-dinitrobenzene 97-00-7 2.27 -4.98 -5.4 -6.19

26 2-Nitrotoluene 88-72-2 2.36 -3.05 -4.14 -3.59

27 3-Nitrotoluene 99-08-1 2.36 -3.05 -4.04 -3.65

28 4-Nitrotoluene 99-99-0 2.36 -3.17 -4.01 -3.67

29 2,5-Dichloroaniline 95-82-9 2.37 -3.58 -4.74 -4.99

30 3,5-Dichloroaniline 626-43-7 2.37 -3.71 -5.16 -4.62

31 2,4-Dichloroaniline 554-00-7 2.37 -3.56 -5.43 -4.41

32 3,4-Dichloroaniline 95-76-1 2.37 -4.37 -5.95 -4.39

33 Tetrachloromethane 56-23-5 2.44 -2.71 -3.64 -3.36

34 2-Chloronitrobenzene 88-73-3 2.46 -3.39 -3.64 -3.72

35 3-Chloronitrobenzene 121-73-3 2.46 -3.63 -3.84 -4.01

36 4-Chloronitrobenzene 100-00-5 2.46 -3.21 -4.31 -4.42

37 Toluene 108-88-3 2.54 -2.5 -2.8 -3.13

38 2,4-Dimethylphenol 105-67-9 2.61 -2.96 -4.43 -3.86

39 Chlorobenzene 108-90-7 2.64 -2.87 -3.77 -3.77

Table 1. Set of 55 organic chemicals with information about their hydrophobicity and toxicity toward the protozoan water flea and fish.
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associated with their partitioning into biological 
membranes [19, 41]. Certain chemicals, however, 
may interact through more specific mechanisms. For 
example, weak organic acids lower the electro-chemical 
gradient and impair the cellular energy transduction by 

membrane. On the other end, compounds with specific 
functional groups may interact with different enzymes 
and receptor sites in the membrane [42]. 

The impact of environmental contaminants can 
be estimated by studying the toxicological effects or 

Table 1. Continued.

40 4-Chloro-3-methylphenol 59-50-7 2.70 -3.8 -4.85 -4.33

41 2,3-Dimethylnitrobenzene 83-41-0 2.91 -3.56 -4.56 -4.39

42 3,4-Dimethylnitrobenzene 99-51-4 2.91 -3.59 -3.98 -4.21

43 2-Chloro-6-nitrotoluene 83-42-1 3.00 -3.68 -4.61 -4.52

44 4-Chloro-2-nitrotoluene 89-59-8 3.00 -3.82 -4.27 -4.44

45 2,3,4-Trichloroaniline 634-67-3 3.01 -4.35 -5.43 -5.15

46 2,4,5-Trichloroaniline 636-30-6 3.01 -4.3 -4.76 -4.92

47 4-Xylene 106-42-3 3.09 -3.12 -3.52 -3.48

48 3,5-Dichloronitrobenzene 618-62-2 3.10 -4.13 -4.46 -4.63

49 2,3-Dichloronitrobenzene 3209-22-1 3.10 -4.07 -4.62 -4.66

50 2,4-Dichloronitrobenzene 611-06-3 3.10 -3.99 -4.66 -4.46

51 2,5-Dichloronitrobenzene 89-61-2 3.10 -4.13 -4.26 -4.59

52 3,5-Dichloronitrobenzene 618-62-2 3.10 -4.13 -4.46 -4.58

53 1,2-Dichlorobenzene 95-50-1 3.28 -3.53 -4.81 -4.4

54 2-Phenylphenol 90-43-7 3.28 -4.09 -5.38 -4.76

55 1,2,4-Trichlorobenzene 120-82-1 3.93 -4.08 -4.16 -4.83

Log Kow = decadic logarithm of the octanol/water partition coefficient calculated with EPISuite [21], LC50 [mol/L] / 
IG50 [mol/L] = effective concentration yielding 50% inhibition. a,c96-h guppy (P. reticulata) mortality (LC50) and the 40-h ciliate 
(T. pyriformis) population growth impairment (IGC50) data was collated in an Appendix by Seward (2002). bMedium Lethal 
Concentrations (LC50 Immobilization) for essays of 48-h, were collated in an Appendix by Von der Ohe (2005)
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Fig. 1. Acute toxicity of 55 organic chemicals toward protozoan Tetrahymena pyriformis, water flea Daphnia magna and fish Poecilia 
reticulata vs. their hydrophobicity values (log Kow); the two vertical lines represent the area with distinguish toxic response among all 
three bio-tests.
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quantifying the bio-accumulation of contaminants in 
exposed organisms. It is well established that substances 
with log Kow ≥3 can easily accumulate biological tissues 
[43]. However, in the case of pharmaceuticals, lipid 
partitioning processes are insufficient to explain bio-
accumulation. It is therefore important to consider the 
depuration kinetics of ionized organic compounds while 
assessing bioaccumulation potential. To evaluate the 
toxicity of chemicals in an aqueous environment, it is 
important to discriminate the absolute concentration 
of a contaminant, bioaccessible fraction and its 
final concentration that interacts with target site(s). 
It is suggested that the bioaccumulation of organic 
compounds in an aquatic environment is more 
related to partitioning coefficients than their absolute 
exposure concentrations. Furthermore, the fate of 
the environmental contaminants is not only affected 
mainly by their physio-chemical characteristics, but 
also biological processes including environmental 
parameters that play a critical role in the uptake of 
these chemicals [44-47]. Biological factors including 
individual size, life cycle, feeding type, lipid content, 
respiration strategy, habitat and metabolic processes 
may affect the uptake and sensitivity of individuals 
to the contaminants [48-50]; however, the available 
information is still limited [51]. 

Numerous synthetic aromatic compounds such 
as phenolic pesticides, pentachlorophenate, benzene 
sulfonates, naphthalene mono- and disulfonates are 
known as hydrophobic ionizable organic compounds 
(HIOCs) [52, 53]. In case of HIOCs, speciation may 
strongly affect the fate of contaminants. It is suggested 
that the charged species show less bioaccumulation 
in comparison to the neutral species [54]. However, 
sorption contaminants to organic matter reduce their 
availability. Predominantly, the freely dissolved fraction 
of a contaminant can be available for uptake. The 
hydrophobic ionizable compounds such as phenolic 
pesticides may destroy the electro-chemical gradient 
of protons through interaction with the energy cycle. 
The process is achieved via short-circuiting, which 
in response may affect their bio-availability and bio-
accumulation, which further enhances their sorption 
in organic molecules [21]. Therefore, the compounds 
with hydrophobic properties have the ability to change 
membrane energization causing membrane perturbation 
that in response exerts narcotic-level effects that reflect 
baseline toxicity. Since the cellular membranes are 
composed of phospholipids, the lipophilic compounds 
can easily penetrate to the membrane, where 
cytochrome P-450 enzymes are embedded. While 
interacting with these enzymes, hydrophilic compounds 
produce a specific mode of action. In the case of less 
hydrophobic organic compounds (e.g., log Kow<2), 
partitioning into the lipid phases is not considerable; 
it is therefore the internal effective concentration that 
should be calculated considering the concentration of 
a toxicant in liquid phase cellular compartments of an 
organism [55]. 

Several agricultural pesticides are weak acids (low 
to moderate) in nature. Toxicants with a strong acidic 
nature have the ability to completely ionize at ambient 
pH. Some banned herbicides with acidic potential 
(i.e., trifluoroacetic and chloroacetic acids) still exist 
as solvent degradation products [56-58]. Since polar 
compounds have strong H-donor/H-acceptor ion 
interactions [21], they exhibit quite low IEC (ionization 
energy compounds) values as compared to non-polar 
compounds. The polar narcotic compounds exert 
toxicity (in terms of 50% internal lethal concentration 
(ILC50)) in a range of 0.6 to 2 mmol/kg (based on body 
weight) [19]. However, the effective concentration in 
the membrane matrix was indistinguishable in an in-
vitro test among the polar and non-polar compounds; 
specifically, where the dependency is only on an energy-
transducing membrane in different biological testing 
units, as the chemicals target lipid protein embedded in 
the membrane matrix [19]. However, the most important 
factor related to whole body concentration in both 
(polar and non-polar) compounds is the distribution of 
the environmental pollutants between target and non-
target compartments [21]. 

Time of exposure has significant influence on the 
response of hydrophobic pollutants. Since the narcotic 
effect (baseline toxicity) is a reversible process in which 
the response to toxicants in the cellular membrane is 
directly associated with their concentration, effect of 
time is determined by the time required for equilibrium 
between the internal and surrounding aqueous phases. 
The bio-accumulation of hydrophobic compounds in 
the cellular compartments increases with increasing 
exposure time. Therefore, the importance of time of 
exposure couldn’t be ruled out. In most acute toxicity 
tests, short exposure time is insufficient to reach 
equilibrium in hydrophobic chemicals. Therefore, 
the obtained effect concentrations from short-term 
experiments could not be time independent, and 
prolonged time duration is recommended [18, 19]. 

Furthermore, it is observed that the LC50-values 
of electrophilic compounds with higher hydrophobic 
potential generally show less deviation from baseline 
models as compared to the electrophilic compounds  
with a hydrophilic nature. Although many factors 
influence the bio-accessibility of environmental 
pollutants, hydrophobicity has a substantial effect 
among physico-chemical properties. The potential 
chemicals could only meet the classification of toxic 
compounds while reaching the target site (by crossing all  
physico-chemical and biological barrier) in such 
quantity that can pose an adverse effect on the exposed 
population. The quantity of potential chemicals 
translated into response may vary from species to 
species and from chemical to chemical, as shown in 
Fig. 1. At a certain scale of hydrophobicity (log Kow 
values 0.5 to 2.5), all environmental pollutants have  
the utmost ability to reach biological compartments 
such as cytosole and target sites in membranes, to 
interfere with normal cell functioning by effecting 
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normal enzymatic activity and directly to biological 
macromolecules.

Conclusions

A significant relationship was found among physico-
chemical (hydrophobicity) parameters and toxicity. 
It was demonstrated that the toxic response of all 
three bio-tests was distinguished at a certain level of 
hydrophobicity (log Kow values 0.5 to 2.5). There seems 
to be no obvious reason, but possibly at this level of 
hydrophobicity of all environmental pollutants have 
the utmost ability to reach biological compartments 
to react with target sites. Secondly, the presence of 
proper aqueous concentrations of chemicals ensures the 
continuous availability of chemicals to target sites that 
lead to wider biological action spectra and are translated 
in a distinguished toxic response. Further, due to proper 
dose administration, all chemicals get an appropriate 
time to reach equilibrium between the inner and outer 
environments in order to follow the chemo-availability 
concept. For future study, along with hydrophobicity, 
additional factors such as steric hindrance, rate of 
hydrolysis, charge, mono- versus polyfunctionality, and 
molecular size should be considered. 
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